(0 POBTANOVNE zadadiL UB UDARE Viazeo-plastioneakoco smaverila)

PMM Vol.29, N2 4, 1965, pp.789-791

A.M. SKOBEEV

(Moscow)
(Received April 12, 1965)

The impact of a viscous-plastic bar against a rigid abstacle was considered in [1]. It was assumed that the plastic deformtions of the bar were confined to the region of impact, with the rest of the bar moving as a rigid body. Separately, it was assumed that the boundary between the plastic and the rigid regions moved from the point of impact towards the free end. Inis natural assumption has recently aroused some doubt, chierly on the grounds of the inherent implication that a bar of infinite length would become loaded and plastic along its entire length immediately upon ifpact against the rigid obstacle. It was concluded that upon the impact of a bar of Inite lensth, the plastic region should spread instantaneousiy over the entive length; with the boundary propagating from the free end.

It will be shown in this paper that the boundary actually originates at the end of impact and that when $i-\infty$ (i is the length of the bire), the average velocity of transition of the boundary tends to infinity over any finite portion of the bar.

1. We shall use a Lagrange system of coordinates, moving together with the obstacle with velocity v_{0} in such a way that at the initiai inatant the bar is at rest, with the p-axis directed along the bar, the obstagle is at $x=0$. We shall adopt the notation: $v(t, x)$ is the velocity, $o(t, x)$ is the axial stress, t is time, 2 is the length of the bar. We shali use the equations of state in the form

$$
\begin{gather*}
\frac{\partial v}{\partial x}=0 \quad \text { for }|\sigma| \leqslant\left|\sigma_{0}\right| \tag{1.1}\\
\left.\frac{\partial v}{\partial x}=\mu\left(\sigma-\sigma_{0}\right) \right\rvert\, \sigma-\sigma_{0}^{\alpha} \quad \text { for }|\sigma|>\left|\sigma_{0}\right| \tag{1.2}
\end{gather*}
$$

We shall assume the following: in the plane $x t$ there exists a curve $x=x_{0} t$ which divides the region $t \geqslant 0$,
$l \geqslant x \geqslant 0$ into regions D_{1} and D_{3} Fig.1);

Fig. 1 the velocity $v(t, x)$ in D_{2} satisifies (1.2) and the equation of motion

$$
\begin{equation*}
\rho_{0} v_{t}=\sigma_{x} \tag{1.3}
\end{equation*}
$$

together with the boundary conditions

$$
\begin{equation*}
v(t, 0)=r_{0}, \quad r_{0}(0, x)=0, \quad \tau_{x}\left(t, x_{0}(t)\right)=0 \tag{1.4}
\end{equation*}
$$

and the velocity $v(t, x)$ in D_{a} satisfies
(1.1) and the equation of motion

$$
\begin{equation*}
\mathrm{P}_{0} \frac{d v}{d t}=-\frac{\sigma_{0}}{l-x_{0}(t)} \tag{1.5}
\end{equation*}
$$

with the initial condition $v(0, x)=0$.
The function $v(t, x)$ is continuous for all $l \geqslant x \geqslant 0, t \geqslant 0$, appart from point $x=0, t=0$. The unknown functions are $v(t, x), \sigma(t, x)$ and $x_{0}(t)$.

We shall further stipulate that $v \geqslant 0, v_{0}>0, \sigma<0, \sigma_{0}<0$. The assumptions of [1] correspond to $0=0, x_{0}(0)=0$.
2. We shall now prove that $x_{0}(0)=0$. Equations (1.2) and (1.3), together with the boundary conditions (1.4), fully derine for region D_{1} the function $v(t, x)$ which depends upon $x_{0}(t)$ and is in a particular case explicitly defined by

$$
v_{-}(t)=\lim v(t, x) \quad \text { for } \quad x \rightarrow x_{0}(t)-0
$$

Similarly, for region D_{2}, Equation (1.5) explicitly defines $v(t, x)$, dependent upon $x_{0}(t)$, as weil as $v_{+}(t) \cdots \lim v(t, x)$ when $x \rightarrow x_{0}(t)+0$. By virtue of the continuity of $v(t, x)$ over $t \geqslant 0, l \geqslant x \geqslant 0$ (apart from point $t=0, x=0$), we have

$$
\begin{equation*}
v_{-}(t)=v_{+}(t) \tag{2.1}
\end{equation*}
$$

which must be satisfied by a suitable choice of $x_{0}(t)$. We shall show that if $x_{0}(0)>0$, then (2.1) is not satisfied. To do so, we shall assume that $x_{0}(0)>0$, we estimate the upper limit of $v_{-}(t)$ and the lower of $v_{+}(t)$ and prove that as $t \rightarrow 0$ the upper estimate is below the lower; that is, $v_{-}(t)<v_{+}(t)$ which contradicts (2.1).

Let us first evaluate $v_{+}(t)$. From (1.1) and (1.5) we have

$$
\begin{equation*}
v_{1}(t)=v(t, x)=\frac{1}{\rho_{0}} \int_{0}^{t} \frac{\left|\sigma_{0}\right|}{l-x_{0}(\xi)} d \xi \geqslant \frac{\left|\sigma_{0}\right|}{\rho_{0} l} t \tag{2.2}
\end{equation*}
$$

Since $x_{0} \leqslant l$, this equation holds also for $x_{0}(0)=l$.
To evaluate $v_{-}(t)$ we shall use the condition $v_{4}<0$ in D_{1}; this oondition follays from $0<0$ and (1.2) The quantity $\sigma(t, x)$ is defined explicitly by Equations (1.2) through (1.4), and the assumption that $\sigma<0$ may not always be valid; but the question or solvability of the problem as a whole is beyond the scope of the present argument.

Thus we shall estimate $v_{-}(t)$ on the assumption that $x_{0}(0)>0$. If this were true, then the inequality $t_{n}>0$ would also hold and $x_{9} ; x_{3}$ and x_{4} would satisfy $x_{0}(t)>x_{4}>x_{3}>x_{2}>0$, for $t_{0} \geqslant t \geqslant 0$ and would othervise be arbitrary. We shall prove that

$$
\begin{equation*}
\int_{x_{3}}^{x_{4}} v(t, x) d x=0(1) t \tag{2.3}
\end{equation*}
$$

$\left.\underset{|0|>\mid 0_{0}}{\substack{\text { where }}} \begin{array}{l}0 \\ |0|\end{array}\right)$ we have $t \rightarrow 0$. Taking into account (1.3) as well as $0<0$,

$$
\begin{aligned}
\rho_{0} \int_{x_{3}}^{x_{4}} v(t, x) d x & =\int_{x_{3}}^{x_{4}} \int_{0}^{t} \frac{\partial\left\lceil\sigma(s, x)-\sigma_{0}\right]}{\partial x} d s d x-\int_{0}^{t}\left[\sigma\left(s, x_{4}\right)-\sigma_{0}\right] d s-\int_{0}^{t}\left[\sigma\left(s, x_{3}\right)-\sigma_{0}\right] d s \leqslant \\
& \leqslant-\int_{0}^{t}\left[\sigma\left(s, x_{3}\right)-\sigma_{0}\right] d s \leqslant-\frac{1}{x_{3}-x_{2}} \int_{x_{2}}^{x_{3}} \int_{0}^{t}\left[\sigma(s, x)-\sigma_{0}\right] d s d x
\end{aligned}
$$

here we have made use of

$$
\frac{\partial}{\partial x} \int_{0}^{t}\left[-\sigma(s, x)+\sigma_{0}\right] d s=-\rho_{0} v(t, x)<0
$$

U'sing (1.2) and Hölder's inequality (which here holds also for $a=0$),
we obtain

$$
\begin{aligned}
& \int_{x_{2}}^{x_{3}} \int_{0}^{t}\left[-\sigma(s, x)+\sigma_{0}\right] d s d x \leqslant\left[\left(x_{3}-x_{2}\right) t\right]^{\frac{\alpha}{1+\alpha}}\left(\int_{x_{2}}^{x_{3}} \int_{0}^{t}\left[-\sigma(s, x)-f \cdot \sigma_{0}\right]^{1+\alpha} d s d x\right)^{\frac{1}{1}} \\
= & {\left[\left(x_{3}-x_{2}\right) t\right]^{\frac{\alpha}{1+\alpha}}\left(\frac{1}{\mu} \int_{0}^{t}\left[v\left(s, x_{2}\right)-v\left(s, x_{3}\right)\right] d s\right)^{\frac{1}{1+\alpha}}-\left[\left(x_{3}-x_{2}\right) t\right]^{\frac{\alpha}{1+\alpha}}[O(1) t]^{\frac{1}{1 \cdot \alpha}}=O(1) t }
\end{aligned}
$$

which proves (2.3). Since $v_{x} \leqslant 0$

$$
v_{-}(t) \leqslant v\left(t, x_{3}\right) \leqslant \frac{1}{x_{4}-x_{3}} \int_{x_{3}}^{x_{4}} v(t, x) d x=0(1) t
$$

that is $v_{-}(t)=0(1) t$. In the light of (2.2) this gives $v_{-}(t)<v_{+}(t)$ at sufficiently small values of t which contradicts (2.1) and thus proves that $x_{0}(0)>0$ is inadmissible. It is worth noting that this proof is inapplicable for $l=\infty$ or $\left|\sigma_{0}\right|=0$, since in such cases the right-hand side of (2.2) becomes zero.
3. We shall next assume that $q=0$ and introduce the function $T(x)$, the inverse of $x_{0}(t)$, that is $\tau\left(x_{0}(t)\right)=t$. For this function we obtain the estimate

$$
\begin{equation*}
\tau(x) \leqslant x^{2} H\left(\frac{\left|\sigma_{0}\right| x^{2}}{v_{0}(l-x)}\right) \tag{3.1}
\end{equation*}
$$

where $H(\xi) \rightarrow 0$ when $\xi \rightarrow 0$. This estimate indicates, in particular, that when $2 \rightarrow \infty$ the curve $x=x_{0}(t)$ approaches the x-axis.

In the following we stipulate that $x_{0}{ }^{\prime}(t)>0$ when $t \leqslant T$ and assume that $t<T$ everywhere. For convenience we shall also assume that $\mu=I$ and $\rho_{0}=1$. With these assumptions, Equations (1.2) and (1.3) can be transformed into the heat conduction equation

Fig. 2

$$
\begin{equation*}
v_{t}=v_{x x} \tag{3.2}
\end{equation*}
$$

without affecting the remaining assumptions of Section 1.

To solve (3.1) we shall construct in the x, t plane a rectangle $t_{1} \geqslant t \geqslant t_{0}, m \geqslant x \geqslant 0$, within which $m>x_{0}\left(t_{1}\right), T>t_{1}>t_{0}>0$, and outside which t_{n}, t_{1} and m are arbitrary (Fig. 2). We shall introduce into this rectangle an auxiliary function $u^{\prime \prime}(t, x)$ which satisfies (3.2) within the rectangle and the following conditions on its boundary:
$u^{m}(t, 0)=v_{0}, \quad u^{m}\left(t_{0}, x\right)=0, \quad u_{x}^{m}(t, m)=0$
Function $u^{\prime \prime}(t, x)$ can easily be written in an explicit form, but we shall need to refer to only some of its properties which can easily be proved to be

$$
\begin{equation*}
u_{x}^{m}<0 \text { for } x<m, \quad u^{m}(t, m)==u^{1}\left(\frac{t}{m^{2}}, 1\right) \equiv v_{0} h\left(\frac{t-t_{0}}{m^{2}}\right) \tag{3.4}
\end{equation*}
$$

where $h(\xi)$ is some function independent of the parameters of the problem; it can be shown that $\xi^{-1} h(\xi) \rightarrow 0$ when $\xi \rightarrow 0$. We shall prove that $v\left(t, x_{0}(t)\right)>u^{m}(t, m)$. For this purpose we shall introduce function

$$
w(t, x)=v(t, x)-u^{m}\left(t_{0}, x\right) .
$$

Within the quadrangle D_{3} bounded by lines $t=t_{0}, t=t_{1}, x=0$ and by curve $x=x_{0}(t)$, function w satisfies (3.2) and the following conditions:

$$
\begin{equation*}
w(t, 0)=0, \quad w\left(t_{0}, x\right)=v\left(t_{0}, x\right), \quad w_{x}\left(t, x_{0}(t)\right)=-u_{x}^{m}\left(t, x_{0}(t)\right) \tag{3.5}
\end{equation*}
$$

According to the theorem of maxima, function w has a minimum either at
$x=0$ or on $t=t_{0}$, or on $x=x_{0}(t)$. However, by virtue of (3.5) function w cannot have a minimum on the curve $x=x_{0}(t)$, since in that case one would have at the point of munimum $w_{x} \leqslant 0$. Since $w=0$ at $x-0$ and $w \geqslant 0$. at $t=t_{0}$, then $w \geqslant 0$ everywhere within D_{3}, and in particular, $w\left(t, x_{0}(t)\right) \geqslant 0$. Whence we conclude, bearing in mind that $u_{x}<0$,

$$
\begin{equation*}
v\left(t, x_{0}(t)\right) \geqslant u^{m}\left(t, x_{0}(t)\right)>u^{m}(t, m)=v_{0} h\left(\frac{t-t_{0}}{m^{2}}\right) \tag{3.6}
\end{equation*}
$$

Since this equation holds for any $t_{0}>0, m>x_{0}\left(t_{1}\right)$, and since $h(\xi)$ is continuous, it follows that (3.6) holas also for $t_{0}=0, m=x_{0}\left(t_{1}\right)$. From (1.5) we have

$$
\begin{equation*}
\cdot v\left(t_{1}, x_{0}\left(t_{1}\right)\right)=\int_{0}^{t_{1}} \frac{\left|\sigma_{0}\right|}{l-x_{0}(\xi)} d \xi \leqslant \frac{\left|\sigma_{0}\right|}{l-x_{0}\left(t_{1}\right)} t_{1} \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) we obtain (writing t for t_{1}, since t_{1} can be chosen arbitrarily)

$$
\begin{equation*}
\frac{\left|\sigma_{0}\right|}{l-x_{0}(t)} t \geqslant v_{0} h\left(\frac{t}{x_{0}^{2}(t)}\right) \tag{3.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\left|\sigma_{0}\right|}{v_{0}\left(l-x_{0}\right)} x_{0}^{2} \geqslant \frac{x_{0}^{2}}{t} h\left(\frac{t}{x_{0}^{2}}\right) \tag{3.9}
\end{equation*}
$$

We shall introduce function $H(\xi)$ defined by Equation

$$
H(\xi-1 h(\xi))=\xi
$$

Function $5^{-1} h(\xi)$ tends to zero when $\xi \rightarrow 0$, and there exists $\beta>0$, such that when \sum_{β} function $\xi^{-1} h(\xi)$ increases monotonously; therefore $H(0)=0$ and $H(\xi)$ is determinate and monotonous for $\xi<\beta^{-2} h(B)$ - From (3.9) we have

$$
\begin{equation*}
\tau(x) \leqslant x^{2} H\left(\frac{\left|\sigma_{0}\right| x^{2}}{v_{0}(l-x\rangle}\right) \tag{3.10}
\end{equation*}
$$

It follows from this equation that when $2 \rightarrow \infty$ then $T(x) \rightarrow 0$ for any fixed value of x.

It also. follows from (3.10) that if

$$
x_{0}=A(t) \sqrt{t}
$$

when $t \rightarrow 0$, then $A(t) \rightarrow \infty$ when $t \rightarrow 0$.
In conclusion, the author wishes to thank N.V. Zrolinskii for reviewing this work.

BIBLIOARAPHY

1. Barenblatt, G.I. and Ishlinski1, A.Iu., Ob udare viazko-plasticheskogo sterzhnia o zhestkuiu pregradu (on the impact of a visco-plastic bar on a rigid obstacle). PMM Vol. 26 , N $3,1962$.
